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The Unification of the Lorentz and Coulomb Gauges
of Electromagnetic Theory

David M. Drury, Member, IEEE

Abstract—The Lorentz and Coulomb gauges of electromagnetic
field theory are shown to be special cases of the same gauge, de-
noted in this paper as the velocity gauge since it specifies the di-
vergence of the vector potential in terms of the velocity of propa-
gation of the scalar potential. This velocity is the speed of light for
the Lorentz gauge and infinite for the Coulomb gauge. With the
velocity gauge, the selection of a gauge can be explained in phys-
ical terms—the specification of the velocity of propagation of the
scalar potential—which engineering students might find more in-
tuitive than a suspiciously arbitrary choice made for mathematical
convenience.

Index Terms—Coulomb guage, electromagnetic field theory,
guage theory, Lorentz guage.

I. INTRODUCTION

I N electromagnetic field theory, the vector potentialis de-
fined as the field whose curl is the magnetic flux density, i.e.,

This leaves the divergence of the vector poten-
tial unspecified, and it is usually chosen for mathematical con-
venience. This arbitrary choice is known as thegauge, gauge
condition, or simply thecondition (for example, see [1]–[5]).
The most often used gauge is the Lorentz gauge; some text-
books [6]–[9] do not even mention the Coulomb (also known as
the transverse, solenoidal, or radiation) gauge. However, at least
one commercially available software package used the Coulomb
gauge for electromagnetic field simulation [10], so undergrad-
uate electrical engineering students should be made aware of it.

In this paper it is shown that the Lorentz and Coulomb gauges
are limiting cases of what is here termed the velocity gauge. The
apparently arbitrary choice of gauge is shown to be a specifica-
tion of the velocity of propagation of the scalar potential

II. THE VELOCITY GAUGE CONDITION

In the course of deriving the free-space wave equations for
the potential fields from Maxwell’s equations (for example, see
[5]), the equations

(1)

and

(2)
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result. In these equations, is the scalar potential, is the
vector potential, is the volume charge density,is the volume
current density, is the speed of light in free space, andand

are the permittivity and permeability of free space such that
In order to separate these coupled equations, a

gauge must be chosen. The most common choice is the Lorentz
gauge

(3)

since it leads to complete separation of the wave equations for
and as shown below. Sometimes [1], [10] the Coulomb gauge

(4)

is more convenient. However, the Lorentz and the Coulomb
gauges are two special cases of avelocity gauge

(5)

If the Lorentz gauge results, while if the Coulomb
gauge is obtained.

In terms of the velocity gauge, the wave equations (1) and (2)
for the potential fields become

(6)

and

(7)

From these equations (which apply only in free space) we can
see that the propagation speed of the vector potential iswhile
the speed of propagation of the scalar potential is(for example,
see [7]). Therefore the gauge condition, (5), specifies the diver-
gence of the vector potential in terms of the speed of propagation

of the scalar potential.
In the Lorentz gauge, and (6) and (7) become the

familiar

(8)

and

(9)
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These equations are completely uncoupled, and the source of
the scalar potential is the charge density while the source of
the vector potential is the current density. In the less-familiar
Coulomb gauge, and (6) and (7) become

(10)

and

(11)

These equations are still partially coupled: the scalar potential
can be obtained from the charge density, but in order to find
the vector potential , (10) must first be solved for the scalar
potential and the result substituted into (11). This requires
more work, so it is not surprising that some undergraduate text-
books do not include the Coulomb gauge. (One way of uncou-
pling these equations is given in [1] and reproduced here in the
Appendix; the complexity and shortcomings of this operation
reinforce the tendency to emphasize the Lorentz gauge in un-
dergraduate engineering education.) In the magnetostatic case
all time derivatives vanish so that all of the above-mentioned
gauges reduce to

and

(12a)

(12b)

III. PHYSICALITY OF THE VELOCITY GAUGE

A derivation in [11] is frequently cited to claim that only
the Lorentz gauge is compatible with charge conservation. (A
simplified version of this derivation is given in [6].) However,
the velocity gauge (and hence its special case of the Coulomb
gauge) is also compatible with charge conservation. Differenti-
ating (6) with respect to time and dividing the result bygives

(13)

We now take the divergence of (7)

(14)

add this equation to (13)

(15)

and rearrange terms to get

(16)

However, from the velocity gauge condition, (5), the left side of
(16) vanishes, and we are left with

(17)

which is the mathematical expression of conservation of charge.
Now consider the speed of propagation of the scalar potential
The possibility of is certain to prompt at least one

student to interrupt a lecture on gauge conditions with the ob-
jection that nothing travels faster thanin free space. Actually,
it is matter and energy that do not propagate faster thanin free
space. The energy of an electromagnetic field is proportional to
the squared magnitudes of the electric and magnetic force fields

and , and their wave equations [3], [5], [6] show that these
fields propagate at speedin free space no matter what gauge
is used to calculate the potential fieldsand For students
who refuse to believe that propagates no
faster than even though is propagating at the fol-
lowing derivation might prove enlightening. Start with (6) and
(7), the wave equations for and in the velocity gauge. In
free space, and so these equations reduce to

(18)

and

(19)

Take the gradient of (18) and the partial time derivative of (19)
to get

(20)

and

(21)

Adding these two equations together produces

(22)

Note that there is a term on both sides of
(22). These terms cancel, and moving the remaining term from
the right side to the left side of the equation gives

(23)
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Einste in  as Armchair Detective:  The  Case of 
Stimulated Radiation 
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28 

Vasant Natarajan 

E i n s t e i n  was in m a n y  ways  like a d e t e c t i v e  on a 
m y s t e r y  t ra i l ,  t h o u g h  in his case  he  was  on  t h e  
t r a i l  of n a t u r e ' s  m y s t e r i e s  a n d  no t  s o m e  m u r d e r  
m y s t e r y !  A n d  like all g o o d  d e t e c t i v e s  he  h a d  a 
s tyle .  I t  cons i s t ed  of t a k i n g  facts  t h a t  he  k n e w  
were  c o r r e c t  and  forc ing  n a t u r e  in to  a s i t u a t i o n  
t h a t  w o u l d  c o n t r a d i c t  th i s  e s t a b l i s h e d  t r u t h .  In  
th is  p rocess  she w o u l d  be  fo rced  to  r e v e a l  s o m e  
n e w  t r u t h s .  E i n s t e i n ' s  1917 p a p e r  on  t h e  q u a n -  
t u m  t h e o r y  of r a d i a t i o n  is a classic e x a m p l e  of 
th i s  s ty le  t h a t  e n a b l e d  h i m  to p r e d i c t  t h e  ex- 
i s t ence  of s t i m u l a t e d  r a d i a t i o n  s t a r t i n g  f rom an  
analys is  of t h e r m o d y n a m i c  e q u i l i b r i u m  b e t w e e n  
m a t t e r  a n d  r a d i a t i o n .  

Einstein is rightly regarded as one of the greatest sci- 
entific geniuses of all time. Perhaps the most amazing 
and awe-inspiring feature of his work was that  he was 
an 'armchair' scientist, not a scientist who spent long 
hours in a darkened laboratory conducting delicate ex- 
periments, but one who performed gedanken (thought) 
experiments (see Appendix)while sitting in his favourite 
chair that nevertheless advanced our understanding of 
nature by leaps and bounds. Two of his greatest con- 
tributions are the special theory of relativity and the 
general theory of relativity, both abstract creations of 
his remarkable intellect. They stand out as scientific 
revolutions that completely changed our perceptions of 
nature - of space and time in the case of the special 
theory and of gravity in the case of the general theory. 
It might be argued that the special theory of relativity 
was necessitated by experimental facts such as the con- 
stancy of the speed of light, but the general theory was 
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almost completely a product  of Einstein 's  imagination.  
For a person to have achieved one revolution in his life- 
t ime is great  enough, but  two revolutions seems quite 
supernatural .  

But  is it really so magical? While it is cer tain tha t  Ein- 
stein was a one-of-a-kind genius, is it at least possible 
to unders tand  the way in which his mind tackled these 
problems? I th ink  the answer is yes, because deep inside 
Einstein was like a detect ive hot on a mystery  trail, of 
course not one solving murder  mysteries but  one t ry ing 
to unravel the mysteries of nature.  Any keen follower of 
murder  mysteries knows tha t  there  are two types of de- 
tectives: those who get down on their  hands and knees 
looking for some microscopic piece of clinching evidence 
at the scene of the crime, and the  second type of 'arm- 
chair detect ives '  who seem to arrive at the solution just  
by th inking logically about  the possibilities. Einstein 
was most  cer ta inly of the second kind, and t rue  to this 
breed, he had his own modus operandi. In simple terms, 
his technique was to imagine na ture  in a s i tuat ion where 
she cont radic ted  established truths,  and revealed new 
t ru ths  in the process. As a case in point,  we will look at 
Einstein 's  1917 paper  t i t led 'On the quan tum theory of 
radiat ion '  where  he predicted the existence of s t imulated 
emission. While  Einstein will always be remembered  for 
his revolut ionary  relat ivity theories, his contr ibut ions to 
the early q u a n tum theory are certainly of the highest 
calibre and the 1917 paper  is a classic. 

It is useful to first set the paper  in its historical per- 
spective. By the t ime Einstein wrote  this paper,  he had 
already finished most  of his work on the relativity theo- 
ries. He had  earlier done his doctoral  thesis on Brownian 
mot ion and was a pioneer of what  is now called statisti- 
cal mechanics.  He was thus a master  at using thermody-  
namic  arguments .  He was one of the earliest scientists 
to accept Planck 's  radiat ion law and its light quan tum 
hypothesis.  He had already used it in 1905 for his expla- 

Einstein was like a 

detective hot on a 

mystery trail, of 

course not one 

solving murder 

mysteries but one 

trying to unravel 

the mysteries of 

nature. 
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Atoms in the upper 
(m) state make a 

transition to the 
lower (n) state by 

spontaneous 
emission. 

nation of the photoelectric effect. He was also aware of 
Bohr's theory of atomic spectra and Bohr's model of the 
atom, which gave some explanation for why atoms emit- 
ted radiation in discrete quanta. What  he did not know 
in 1917 was any of the formalism of quantum mechanics, 
no SchrSdinger equation and not the de Broglie hypoth- 
esis for wave nature of particles that we learn in high 
school these days. Despite this, Einstein was successful 
in predicting many new things in this paper. 

Let us now see what Einstein's strategy in this paper is. 
He is attempting to understand the interaction between 
atoms and radiation from a quantum mechanical per- 
spective. For this, he imagines a situation where a gas 
of atoms is in thermal equilibrium with radiation at a 
temperature T. The temperature T determines both the 
Maxwell-Boltzmann velocity distribution of atoms and 
the radiation density p at different frequencies through 
Planck's law. He assumes that there are two quantum 
states of the atom Z,, and Zm, whose energies are r 
and r respectively, and which satisfy the inequality 
E m >  Cn. The relative occupancies W~, Wm of these 
states at a temperature T depends on the Boltzmann 
factor as follows: 

W,~ = p n e x p ( - r  (1) 

Wm = pmexp( - r  (2) 

where pn is a number, independent of T and character- 
istic of the atom and its nth quantum state, called the 
degeneracy or 'weight' of the particular state. Similarly, 
Pm is the weight of the mth state. 

Einstein then makes the following basic hypotheses about 
the laws governing the absorption and emission of radi- 
ation: 

1. Atoms in the upper (m) state make a transition to 
the lower (n) state by spontaneous emission. The 
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. 

. 

probability d W  that such a transition occurs in 
the time dt  is given by: 

d W  = A~ndt. (3) 

A m in modern terminology is called the Einstein 
A coefficient. Since this process is intrinsic to the 
system and is not driven by the radiation field, it 
has no dependence on the radiation density. 

Atoms in the lower state make a transition to the 
upper state by absorbing radiation. The probabil- 
ity that such a transition occurs in the time dt  is 
given by: 

d W  = B m  pdt .  (4) 

B,~ is now called the Einstein B coefficient. The 
absorption process is driven by the radiation field, 
therefore the probability is directly proportional 
to the radiation density p at frequency v. 

The two postulates above seem quite reasonable. 
Now comes his new postulate, that there is a third 
process of radiative transition from the upper state 
to the lower state, namely stimulated emission, 
d r i v e n  by the r a d i a t i o n  field. By analogy with 
the probability for absorption, the probability for 
stimulated emission is: 

d W  = Br~pdt .  - (5) 

Einstein calls the processes in both 2 and 3 as "changes 
of state due to irradiation". We will see below how he is 
forced to include postulate 3 in order to maintain ther- 
modynamic equilibrium. 

The main requirement of thermodynamic equilibrium is 
that the occupancy of atomic levels given by the equa- 
tions should not be disturbed by the absorption and 
emission processes postulated above. Therefore the num- 
ber of absorption processes (type 2) per unit time from 

RESONANCE I June 2001 
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By substituting this result in (6), Einstein obtains a new, 
simple derivation of Planck's law: 

A~/B,~ (9) 
P = exp[ (em-  en)/kT]- 1" 

Notice that  he will not get the correct form of this law 
if he did not have the stimulated emission term in (6). 
Another reason for him to be confident that his three 
hypotheses about absorption and emission are correct. 
He then compares the above expression for p with Wien's 
displacement law: 

p=p3f(u/T) (10) 

The momentum 

transfer during 

absorption and 

emission should 

result in the same 

statistical 

distribution of 

velocities as 

obtained from 

collisions. 

to obtain 

and 

An --CRY 3 (ii) 
Bi 

- = (12) 

with constants a and h. The second result is well-known 

from the Bohr theory of atomic spectra. Einstein is 
now completely sure that his three hypotheses about 

radiation transfer are correct since he has been able to 

derive both Planck's law and Bohr's principle based on 

these hypotheses. 

Einstein does not stop here. He now considers how inter- 

action with radiation affects the atomic motion in order 

to see if he can predict new features of the momentum 

transferred by radiation. Earlier he had argued that 

thermal equilibrium demands that the occupancy of the 

states remain undisturbed by interaction with radiation. 

Now he argues that the Maxwell-Boltzmann velocity 

distribution of the atoms should not be disturbed by 

the interaction. In other words, the momentum transfer 
during absorption and emission should result in the same 

statistical distribution of velocities as obtained from col- 

lisions. From kinetic theory, we know that the Maxwell 
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The momentum 

transferred to the 
atom is in the 

direction of 

propagation for 
absorption and in 

the opposite 

direction for 
emission. 

Using this approach, Einstein calculates R and (A2). He 
shows that (17) is satisfied identically when these values 
are substituted, which implies that the velocity distrib- 
ution from kinetic theory is not disturbed if and only if 
momentum exchange with radiation occurs in units of 
E/c in a definite direction. 

He thus concludes the paper with the following obser- 
vations. There must be three processes for radiative 
transfer, namely absorption, spontaneous emission, and 
stimulated emission. Each of these interactions is quan- 
tized and takes place by interaction with a single radia- 
tion bundle. The radiation bundle (which we today call 
a photon) carries not only energy of hv but also momen- 
tum of hu/c in a well defined direction. The momentum 
transferred to the atom is in the direction of propagation 
for absorption and in the opposite direction for emission. 
And finally, ever loyal to his dislike for randomness in 
physical laws ("God does not play dice!"), he concludes 
that one weakness of the theory is that  it leaves the du- 
ration and direction of the spontaneous emission process 
to 'chance'. However, he is quick to point out that  the 
results obtained are still reliable and the randomness is 
only a defect of the "present state of the theory". 

What  far reaching conclusions starting from an analysis 
of simple thermodynamic equilibrium! This is a truly 
great paper in which we see two totally new predictions. 
First, he predicts the existence of stimulated emission. 
And to top that, for the first time since Planck intro- 
duced radiation quanta, he shows that each quantum 
carries well defined momentum. He shows that  the di- 
rectional momentum is present even in the case of spon- 
taneous emission. Thus an atom cannot decay by emit- 
ting "outgoing radiation in the form of spherical waves" 
with no momentum recoil. 

Today his conclusions about momentum transfer during 
absorption and emission of radiation have been abun- 
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dantly verified. Equally well verified is his prediction 
of stimulated emission of radiation. Stimulated emis- 
sion is the mechanism responsible for operation of the 
laser, which is used in everything from home comput- 
ers and CD players to long distance communication sys- 
tems. Stimulated emission, or more correctly stimulated 
scattering, underlies our understanding of the phenom- 
enon of Bose-Einstein condensation which plays an im- 
portant role in the explanation of superconductivity and 
superfluidity. The two predictions, momentum transfer 
from photons and stimulated emission, are particularly 
close to my heart because they play a fundamental role 
in one of my areas of research, namely laser cooling of 
atoms. In laser cooling, momentum transfer from laser 
photons is used to cool atoms to very low temperatures 
of a few millionths of a degree above absolute zero. Per- 
haps fittingly, it is the randomness or 'chance' associated 
with the spontaneous emission process which he disliked 
so much that is responsible for the entropy loss associ- 
ated with cooling. In other words, as the randomness 
from the atomic motion gets reduced by cooling, it gets 
added to the randomness in the radiation field through 
the spontaneous emission process, thus maintaining con- 
sistency with the second law of thermodynamics. 

Conc lus ions  

We have seen how Einstein was able to use the principle 
of thermodynamic equilibrium to imagine a situation, 
where radiation and matter were in dynamical equilib- 
rium and from that predict new features of the radiative 
transfer process. As mentioned before, this was a recur- 
ring theme in his work, a kind of modus operandi for 
the great 'detective'. In his later writings, he said that 
he always sought one fundamental governing principle 
from which he could derive results through these kind 
of arguments. He found such a principle for thermo- 
dynamics, namely the second law of thermodynamics, 
which states that it is impossible to build a perpetual 

Stimulated 
emission is the 
mechanism 
responsible for 
operation of the 
laser, which is 
used in everything 
from home 
computers and CD 
players to long 
distance 
communication 
systems. 
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Einstein's attempts 
at geometrizing 

electromagnetic 
forces remained an 

unfulfilled dream, 
but that is a story 

for another day. 

motion machine. He showed that  the second law was 
a necessary and sufficient condition for deriving all the 
results of thermodynamics. His quest in the last four 
decades of his life was to geometrize all forces of nature. 
In this quest, he felt that  he had indeed found the one 
principle that would allow him to do this uniquely, and 
this was the principle of relativity: 

the laws of physics must look the same to all ob- 
servers no matter what their state of motion. 

He had already used this principle to geometrize grav- 
ity in the general theory of relativity. His at tempts at 
geometrizing electromagnetic forces remained an unful- 
filled dream, but that  is a story for another day. 

A p p e n d i x  

E x a m p l e s  of gedanken Experiments 

We present two examples of gedanken experiments that  
illustrate the Einstein technique for arriving at new re- 
sults. Both of these experiments yield results associated 
with the general theory of relativity, but are so sim- 
ple and elegant that  they can be understood without 
any knowledge of the complex mathematical  apparatus 
needed for the general theory. The first experiment is 
due to Einstein himself, while the second is due to Her- 
mann Bondi. 

E x a m p l e  1. This is a thought experiment devised by 
Einstein to arrive at the conclusion that  the general the- 
ory of relativity is an extension of the special theory 
which requires curved spacetime, or spacetime in which 
the rules of plane (Euclidean) geometry do not apply. 
The 'known' facts are the results of special theory of 
relativity applicable to inertial systems, and the equiva- 
lence principle which states that  inertial mass is exactly 
equal to gravitational mass. Einstein's argument pro- 
ceeds as follows. 
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Rules





Conservation of Angular 

Momentum

Photon spin = 1

Therefore Δl = -1 or +1

Photon Propagation Direction Can Be
parallel

anti-parallel
perpendicular

to the L quantization axis
Therefore Δm = -1, 0, +1  





The Dipole Allowed 

Decays of n=2 States



Time-Dependent Perturbation Theory: Solved Problems
1. Consider a hydrogen atom in a time-dependent electric field E = E(t) k. Calculate all ten of
the dipole matrix elements between the n = 1 ground state and the four n = 2 excited states.
Also calculate the five expectation values of the dipole operator for these five states. Note that
“calculate” here means show that fourteen out of the fifteen are zero with a clever argument, so
that you only need to do one integral!

First, do the calculation using the even-odd symmetry with respect to z of the three ingredi-
ents, namely: (1) the wavefunctions, (2) the dipole term, and (3) the limits of integration. Show
which matrix elements must vanish and which ones can survive:

(a) Write down the n = 1 ground state wavefunction, and the four n = 2 excited state wave-
functions in spherical coordinates:

ˆnlm(r) =< r; µ; ` | n; l; m >= Rnl(r) Ylm(µ; `):

(b) Show that these five wavefunctions squared | ˆnlm(x; y; z) |2 are all even functions of z.

(c) Use your result from part b to show that the matrix elements

< n; l; m | z | n; l; m >=
∫ ∞

−∞
z | ˆ(x; y; z) |2 dx dy dz = 0:

(d) Show that four of these five states are even functions of z, namely that ˆ100, ˆ200, ˆ211 and
ˆ21−1 are all even functions of z, and that ˆ210 is an odd function of z.

(e) Use your result from part d to show that all the following dipole matrix elements between
pairs of the even states are zero, i.e., show that

< 1; 0; 0 | z | 2; 0; 0 > = < 1; 0; 0 | z | 2; 1; 1 > = < 1; 0; 0 | z | 2; 1;−1 > = 0;

< 1; 0; 0 | z | 2; 1; 0 > = < 2; 1; 1 | z | 2; 1; 0 > = < 2; 1;−1 | z | 2; 1; 0 > = 0;

< 2; 0; 0 | z | 2; 1; 1 > = < 2; 0; 0 | z | 2; 1; −1 > = < 2; 1; 1 | z | 2; 1;−1 > = 0:

(f) Use the even and odd argument in z to explain why the only non-zero matrix elements are

< 1; 0; 0 | z | 2; 1; 0 > =
∫ ∞

−∞
ˆ∗

200(x; y; z) z ˆ210(x; y; z) dx dy dz;

and

< 2; 0; 0 | z | 2; 1; 0 > =
∫ ∞

−∞
ˆ∗

100(x; y; z) z ˆ210(x; y; z) dx dy dz:

1



(g) Put in the wavefunctions and calculate the two non-zero H1 = −eEz integrals from part f,
i.e., do the integrals. For example, calculate

< 1; 0; 0 | H1 | 2; 1; 0 >= −eE
1√
…a3

1√
32…a3

1
a

∫ ∞

−∞
e−r=a e−r=2a z d3r

or

< 1; 0; 0 | z | 2; 1; 0 >= −eE
1√
…a3

1√
32…a3

1
a

∫ ∞

−∞
e−r=a e−r=2a (r cos µ) sin µ dµ d` r2 dr:

You should find that

< 1; 0; 0 | H1 | 2; 1; 0 >= −(28=35
√

2) eEa ' −0:7449 eEa;

and that

< 2; 0; 0 | z | 2; 1; 0 >= −3 eEa:

Second, do the calculation using the orthonormality of the spherical harmonics and the addition
rules for angular momentum:

(h) First show that z = r cos µ ' Y10(µ; `). Then use the angular momentum addition rules to
add Y10 to one (or the other) Ylm under the integral. Finally, use the orthonormality of the
Ylm’s to show that all the matrix elements except < 1; 0; 0 | z | 2; 1; 0 > must vanish.

(i) Which method do you prefer? Explain why you prefer it! It is very important that you fully
understand both methods: they are both extremely powerful and extremely useful!!!

1. The wave function expressed in spherical coordinates is given by

ˆnlm(~r) = <r; µ; `
∣∣n; l;m> Rnl(r)Ylm(µ; `):

Using the functional forms of the Rnls and of the spherical harmonics, we find

ˆ100 = R10Y00 = 2a−3=2e−r=a

(
1
4…

)1=2

=
1√
…

a−3=2e−r=a;

ˆ200 = R20Y00 =
1√
2
a−3=2

(
1 −

r

2a

)
e−r=2a

(
1
4…

)1=2

=
1

2
√

2…
a−3=2

(
1 −

r

2a

)
e−r=2a;

2



ˆ210 = R21Y10 =
1√
24

a−3=2
( r

a

)
e−r=2a

(
3
4…

)1=2

cos(µ) =
1

4
√

2…
a−3=2

(r

a

)
e−r=2a cos(µ);

ˆ211 = R21Y11 =
1√
24

a−3=2
(r

a

)
e−r=2a

[
−

(
3
8…

)1=2

sin(µ)ei`

]
= −

1
8
√

…
a−3=2

(r

a

)
e−r=2a sin(µ)ei`;

ˆ21;−1 = R21Y1;−1 =
1√
24

a−3=2
(r

a

)
e−r=2a

(
3
8…

)1=2

sin(µ)e−i` =
1

8
√

…
a−3=2

( r

a

)
e−r=2a sin(µ)e−i`:

1.(b) Remember, an even function is one for which f(−x) = f (x). If there is more than one
independent variable, as we have here, the function may be even with respect to one or more
of the variables. Even with respect to z for the function f(x; y; z) means that f(x; y; −z) =
f (x; y; z). The wave functions are currently in spherical coordinates ˆ(r; µ; `). We need to find
their symmetries in Cartesian coordinates

r =
(
x2 + y2 + z2)1=2

; cos µ =
z

(x2 + y2 + z2)1=2 ; sin µ =

(
x2 + y2

)1=2

(x2 + y2 + z2)1=2 ; and ` = tan−1
(y

x

)
:

We actually only need to do enough examination to determine the symmetry with respect to z
and not a complete change of variables. Using the ˆnlm’s from part a, we find

∣∣ˆ100(x; y; z)
∣∣2 =

1
…

a−3e−2(x2+y2+z2)1=2
=a; where (−z)2 = z2

⇒
∣∣ˆ100(x; y; −z)

∣∣2 =
∣∣ˆ100(x; y; z)

∣∣2 so
∣∣ˆ100

∣∣2 is even wrt z:

∣∣ˆ200(x; y; z)
∣∣2 =

1
8…

a−3

(
1 −

(
x2 + y2 + z2

)1=2

2a

)2

e−(x2+y2+z2)1=2
=a and (−z)2 = z2 in both places

⇒
∣∣ˆ200(x; y; −z)

∣∣2 =
∣∣ˆ200(x; y; z)

∣∣2 so
∣∣ˆ200

∣∣2 is even wrt z:

∣∣ˆ210(x; y; z)
∣∣2 =

1
32…

a−3

((
x2 + y2 + z2

)

a2

)
e−(x2+y2+z2)1=2

=a z2

(x2 + y2 + z2)

3



and (−z)2 = z2 in all four places

⇒
∣∣ˆ210(x; y; −z)

∣∣2 =
∣∣ˆ210(x; y; z)

∣∣2 so
∣∣ˆ210

∣∣2 is even wrt z:

∣∣ˆ211(x; y; z)
∣∣2 =

1
64…

a−3

((
x2 + y2 + z2

)

a2

)
e−(x2+y2+z2)1=2

=a x2 + y2

(x2 + y2 + z2)
ei`(x;y)

and (−z)2 = z2 in all three places

⇒
∣∣ˆ211(x; y; −z)

∣∣2 =
∣∣ˆ211(x; y; z)

∣∣2 so
∣∣ˆ211

∣∣2 is even wrt z:

∣∣ˆ21;−1(x; y; z)
∣∣2 =

1
64…

a−3

((
x2 + y2 + z2

)

a2

)
e−(x2+y2+z2)1=2

=a x2 + y2

(x2 + y2 + z2)
e−i`(x;y)

and (−z)2 = z2 in all three places

⇒
∣∣ˆ211(x; y; −z)

∣∣2 =
∣∣ˆ211(x; y; z)

∣∣2 so
∣∣ˆ211

∣∣2 is even wrt z:

1.(c) Here we use the facts that the product of an even function is an odd function, and that
an odd function integrated between symmetric limits is zero. The expectation values of z are
given by

<n; l; m|z|n; l; m> =
∫ ∞

−∞
z
∣∣ˆ(x; y; z)

∣∣2 dx dy dz =
∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
z
∣∣ˆ(x; y; z)

∣∣2 dz;

but z is an odd function, and all of the
∣∣ˆnlm(x; y; z)

∣∣2 are even functions, so all of the z
∣∣ˆnlm(x; y; z)

∣∣2
are odd functions. The integral with respect to z is between symmetric limits. Therefore

<n; l; m|z|n; l;m> =
(∫ ∞

−∞
dx

∫ ∞

−∞
dy

)
· 0 = 0:

1.(d) Referring to wave functions of part (a) and the Cartesian/spherical relations of part (b),

ˆ100 =
1√
…

a−3=2e−(x2+y2+z2)1=2
=a; and (−z)2 = z2

4



⇒ ˆ100(x; y;−z) = ˆ100(x; y; z) so ˆ100 is even wrt z:

ˆ200(x; y; z) =
1

2
√

2…
a−3=2

(
1 −

(
x2 + y2 + z2

)1=2

2a

)
e−(x2+y2+z2)1=2

=2a;

and (−z)2 = z2 in both places

⇒ ˆ200(x; y;−z) = ˆ200(x; y; z) so ˆ200 is even wrt z:

ˆ210 =
1

4
√

2…
a−3=2

((
x2 + y2 + z2

)1=2

a

)
e−(x2+y2+z2)1=2

=2a z

(x2 + y2 + z2)1=2
;

This is an odd function. In the three places where
(
x2 + y2 + z2

)1=2
is substituted for r; (−z)2 =

z2. This portion of the wave function is even. The remaining factor is z, which is an odd
function. The product of an even and an odd function is an odd function

⇒ ˆ210(x; y;−z) = −ˆ210(x; y; z) so ˆ210 is odd wrt z:

ˆ211 = − 1
8
√

…
a−3=2

((
x2 + y2 + z2

)1=2

a

)
e−(x2+y2+z2)1=2

=2a

(
x2 + y2

)1=2

(x2 + y2 + z2)1=2 ei`(x;y);

where (−z)2 = z2 in all three places, and ` = `(x; y) is independent of z,

⇒ ˆ211(x; y;−z) = ˆ211(x; y; z) so ˆ211 is even wrt z:

ˆ21;−1 = −
1

8
√

…
a−3=2

((
x2 + y2 + z2

)1=2

a

)
e−(x2+y2+z2)1=2

=2a

(
x2 + y2

)1=2

(x2 + y2 + z2)1=2 e−i`(x;y);

where (−z)2 = z2 in all three places, and ` = `(x; y) is again independent of z,

⇒ ˆ21;−1(x; y;−z) = ˆ21;−1(x; y; z) so ˆ21;−1 is even wrt z:
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1.(e) From part (d), ˆ100; ˆ200; ˆ211; and ˆ21;−1 are even functions with respect to z. Us-
ing the same argument as in part (c),

<ˆeven wrt z

∣∣z
∣∣ˆeven wrt z > =

∫ ∞

−∞
(ˆeven wrt z)

∗
z (ˆeven wrt z) dx dy dz

=
∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
(ˆeven wrt z)

∗
z (ˆeven wrt z) dz:

Again, z is an odd function. The product of an even and odd function is odd; this odd function
multiplied by another even function yields an odd function overall. The integral with respect to
z is between symmetric limits, and an integral of an odd function between symmetric limits is
zero. Therefore

<1; 0; 0
∣∣z

∣∣2; 0; 0> = <1; 0; 0
∣∣z

∣∣2; 1; 1> = <1; 0; 0
∣∣z

∣∣2; 1; −1> = 0

<2; 0; 0
∣∣z

∣∣2; 1; 1> = <2; 0; 0
∣∣z

∣∣2; 1;−1> = <2; 1; 1
∣∣z

∣∣2; 1; −1> = 0:

1.(f) The remaining matrix elements are given by

<1; 0; 0
∣∣z

∣∣2; 1; 0>; <2; 0; 0
∣∣z

∣∣2; 1; 0>; <2; 1; 1
∣∣z

∣∣2; 1; 0> and <2; 1; −1
∣∣z

∣∣2; 1; 0> :

These integrals all have the form
∫ ∞

−∞ (even function) (odd function) (odd function) with re-
spect to z, which we would expect to be non-zero. We can examine two at once, using z =
r cos µ, and the volume element in spherical coordinates which is dv = r2 sin µdrdµd`,

<2; 1; ±1
∣∣z

∣∣2; 1; 0> =
∫ ∞

−∞

(
∓1
8
√

…
a−3=2

(r

a

)
e−r=2a sin(µ)e±i`

)∗

r cos µ
1

4
√

2…
a−3=2

( r

a

)
e−r=2a cos(µ) dV

=
∓1

32…
√

2
1
a5

∫ ∞

0
dr r5e−r=a

∫ …

0
dµ sin2 µ cos2 µ

∫ 2…

0
d` e∓i`

:

Examining just the azimuthal integral, we find
∫ 2…

0
d` e∓i` =

∫ 2…

0
d` cos ` ∓ i sin`

=
∫ 2…

0
d` cos ` ∓ i

∫ 2…

0
d` sin`

= sin`
∣∣∣
2…

0
± i cos `

∣∣∣
2…

0

= (0 − 0) ± i (1 − 1) = 0;

therefore, the integral over all space will be zero regardless of the values of the radial and polar
integrals, i.e.,

<2; 1; 1
∣∣z

∣∣2; 1; 0> = <2; 1;−1
∣∣z

∣∣2; 1; 0> = 0:
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1.(g) We have been examining expectation values of z because H1 = −eEz, where −eE is a
constant. If the expectation value is non-zero, the value of the integral multiplied by −eE will
express the result in energy units.

There are two remaining integrals. Using z = r cos µ and dV = r2 sin µdrdµd`, the integral

<2; 0; 0
∣∣z

∣∣2; 1; 0> =
∫ ∞

−∞

(
1

2
√

2…
a−3=2

(
1 −

r

2a

)
e−r=2a

)∗

r cos µ
1

4
√

2…
a−3=2

(r

a

)
e−r=2a cos(µ) dV

=
1

16…a4

∫ ∞

0
dr

(
1 −

r

2a

)
r4e−r=a

∫ …

0
dµ cos2 µ sin µ

∫ 2…

0
d`

=
1

16…a4

∫ ∞

0
dr

(
1 −

r

2a

)
r4e−r=a

∫ …

0
dµ cos2 µ sin µ [2…]

=
1

8a4

∫ ∞

0
dr

(
1 − r

2a

)
r4e−r=a

[
−cos3 µ

3

]…

0

=
1

8a4

∫ ∞

0
dr

(
1 − r

2a

)
r4e−r=a

[
2
3

]

=
1

12a4

∫ ∞

0
dr

(
1 − r

2a

)
r4e−r=a

=
1

12a4

[∫ ∞

0
dr r4e−r=a − 1

2a

∫ ∞

0
dr r5e−r=a

]
:

These integrals are evaluated using

∫ ∞

0
xne−„x dx = n! „−n−1; Re „ > 0;

with „ = 1=a for both, and with n = 4 and 5 respectively, so we find

<2; 0; 0
∣∣z

∣∣2; 1; 0> =
1

12a4

[
4!

(
1
a

)−4−1

− 1
2a

5!
(

1
a

)−5−1
]

=
1

12a4

[
4 · 3 · 2
(1=a)5

− 1
2a

(
5 · 4 · 3 · 2

(1=a)6

)]

=
1

12a4

[
24a5 −

1
2a

120a6
]

=
1

12a4

[
24a5 − 60a5]

=
1

12a4

(
−36a5) = −3a:

Since H1 = −eEz, we find

⇒ <2; 0; 0
∣∣z

∣∣2; 1; 0> = 3eEa:
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The last integral is <1; 0; 0
∣∣z

∣∣2; 1; 0> which in energy units is given by

<1; 0; 0
∣∣H1

∣∣2; 1; 0> = <1; 0; 0
∣∣ − eEz

∣∣2; 1; 0>

= −eE <1; 0; 0
∣∣z

∣∣2; 1; 0>

= −eE

∫ ∞

−∞
(ˆ100)

∗
z ˆ210 dV

= −eE

∫ ∞

−∞

1√
…

a−3=2e−r=a z
1

4
√

2…
a−3=2

( r

a

)
e−r=2a cos(µ) dV

= −
eE

4…
√

2a4

∫ ∞

−∞
re−3r=2a z cos(µ) dV:

Using z = r cos µ and dV = r2 sin µdrdµd`, we find

<1; 0; 0
∣∣H1

∣∣2; 1; 0> = −
eE

4…
√

2a4

∫ ∞

−∞
r4e−3r=2a cos2 µ sin µ dr dµ d`

= − eE

4…
√

2a4

∫ ∞

0
dr r4e−3r=2a

∫ …

0
dµ cos2 µ sin µ

∫ 2…

0
d`

= −
eE

4…
√

2a4

∫ ∞

0
dr r4e−3r=2a

∫ …

0
dµ cos2 µ sin µ(2…)

= −
eE

2
√

2a4

∫ ∞

0
dr r4e−3r=2a

[
−

cos3 µ

3

]…

0

= −
eE

2
√

2a4

∫ ∞

0
dr r4e−3r=2a

[
−

−1 − 1
3

]…

0

= − eE

3
√

2a4

∫ ∞

0
dr r4e−3r=2a:

As before, using ∫ ∞

0
xne−„x dx = n!„−n−1; Re „ > 0;

with „ = 3=2a and n = 4 we find

<1; 0; 0
∣∣H1

∣∣2; 1; 0> = −
eE

3
√

2a4
4!

(
3
2a

)−5

= − eE

3
√

2a4

4 · 3 · 2(2a)5

35

= −
eE

3
√

2a4

3 · 23 · 25 · a5

35

⇒ <1; 0; 0
∣∣H1

∣∣2; 1; 0> = − eE√
2

28 · a

35 = −0:7449eEa:
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1.(h) The wave functions under consideration are ˆnlm = Rnl(r)Ylm(µ; `), which are explicitly

ˆ100 = R10Y00; ˆ200 = R20Y00; ˆ210 = R21Y10; ˆ211 = R21Y11; ˆ21;−1 = R21Y1;−1:

The integrals for the expectation values of z are given by

<n; l;m
∣∣z

∣∣n′; l′;m′ > = <n; l; m
∣∣r cos µ

∣∣n′; l′;m′ >

=
∫ ∞

−∞
ˆ∗

nlm r cos µ ˆn′l′m′ dV

=
∫ ∞

−∞
R∗

nlY
∗
lm r cos µ Rn′l′Yl′m′ dV

=
∫ ∞

0
R∗

nlRn′l′ r3 dr

∫
Y ∗

lm cos µ Yl′m′ dΩ;

where the factor of r2 in the radial integral comes from the volume element. The angular mo-
mentum addition rules and the integration can be summarized by

∫
Y ∗

lm cos µ Yl′m′ dΩ;=
[
(l′ − m′ + 1)(l′ + m′ + 1)

(2l′ + 1)(2l′ + 3)

]1=2

–mm′–l;l′+1+
[

l′ − m′)(l′ + m′)
(2l′ − 1)(2l′ + 1)

]1=2

–mm′–l;l′−1:

For this integral to be non-zero, l′ must differ from l by ±1. This means that

<1; 0; 0
∣∣z

∣∣1; 0; 0> = <2; 0; 0
∣∣z

∣∣2; 0; 0> = <2; 1; 0
∣∣z

∣∣2; 1; 0> = <2; 1; 1
∣∣z

∣∣2; 1; 1>=<2; 1; −1
∣∣z

∣∣2; 1;−1>

= <1; 0; 0
∣∣z

∣∣2; 0; 0> = <2; 1; 0
∣∣z

∣∣2; 1; 1> = <2; 1; 0
∣∣z

∣∣2; 1; −1> = <2; 1; 1
∣∣z

∣∣2; 1;−1> = 0:

Also, m must equal m′ for the integral to be non-zero, so

<1; 0; 0
∣∣z

∣∣2; 1; 1> = <1; 0; 0
∣∣z

∣∣2; 1;−1> = <2; 0; 0
∣∣z

∣∣2; 1; 1> = <2; 0; 0
∣∣z

∣∣2; 1; −1> = 0:

Only < 1; 0; 0
∣∣z

∣∣2; 1; 0 > and < 2; 0; 0
∣∣z

∣∣2; 1; 0 > remain as non-zero possibilities. Knowing that
z = r cos µ ∼ Y10, we can see that these two integrals have the form

∫
Y00Y10Y10 dΩ:

Parity conservation in angle space can be summarized by l1+l2+l3+m1+m2+m3 = even integer.
For our two integrals, this condition is satisfied for the integer 2. For both <1; 0; 0

∣∣z
∣∣2; 1; 0> and

<2; 0; 0
∣∣z

∣∣2; 1; 0>, the integral over solid angle can now be evaluated using

∫
Y ∗

00 cos µ Y10 dΩ; =
[
(1 − 0 + 1)(1 + 0 + 1)
(2 · 1 + 1)(2 · 1 + 3)

]1=2

–00–0;1+1 +
[

(1 − 0)(1 + 0)
(2 · 1 − 1)(2 · 1 + 1)

]1=2

–00–0;1−1:

Here, the first expression on the right side of the equation will be zero because the indices on the
second Kronecker – are not identical. Both sets of indices on the Kronecker – of second expres-
sion on the right are identical, so we find

∫
Y ∗

00 cos µ Y10 dΩ;=
1√
3
:
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Next, we will evaluate the radial integrals using this angular factor. We find

<1; 0; 0
∣∣z

∣∣2; 1; 0> =
1√
3

∫ ∞

0
R10 r R21 r2 dr

=
1√
3

∫ ∞

0

(
2a−3=2e−r=a

) (
1√
24

a−3=2 r

a
e−r=2a

)
r3 dr

=
1

3
√

2a4

∫ ∞

0
r4e−3r=2adr

This integral can be evaluated using

∫ ∞

0
xne−„x dx = n! „−n−1; Re „ > 0;

with „ = 3=2a and n = 4, so we find

<1; 0; 0
∣∣z

∣∣2; 1; 0> =
1

3
√

2a4
4 · 3 · 2

(
3
2a

)−5

=
1

3
√

2a4

3 · 23 · 25 · a5

35

⇒ <1; 0; 0
∣∣z

∣∣2; 1; 0> =
28

√
2 · 35

a

⇒ <1; 0; 0
∣∣H1

∣∣2; 1; 0> = −eE
28

√
2 · 35

a = −0:7449eEa; which is the same as part (g):

The other integral is given by

<2; 0; 0
∣∣z

∣∣2; 1; 0> =
1√
3

∫ ∞

0
R20 r R21 r2 dr

=
1√
3

∫ ∞

0

(
1√
2
a−3=2

(
1 −

r

2a

)
e−r=2a

)(
1√
24

a−3=2 r

a
e−r=2a

)
r3 dr

=
1√

3
√

2
√

24a4

∫ ∞

0

(
1 −

r

2a

)
r4e−r=a dr

=
1

12a4

∫ ∞

0
r4e−r=a dr −

1
24a5

∫ ∞

0
r5e−r=a dr:

We can evaluate this integral using the same procedure, with „ = 1=a and n = 4 and 5 respec-
tively. We find

<2; 0; 0
∣∣z

∣∣2; 1; 0> =
1

12a4

4 · 3 · 2
(1=a)5

− 1
24a5

5 · 4 · 3 · 2
(1=a)6

=
24a5

12a4 − 120a6

24a4
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⇒ <2; 0; 0
∣∣z

∣∣2; 1; 0> = 2a − 5a = −3a; which is the same as part (g)

and <2; 0; 0
∣∣H1

∣∣2; 1; 0> = 3eEa:

1.(i) : : :Wow! That spherical harmonic stuff does seem to be a lot less work: : :.
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The Dipole Allowed 

Decays of |3 0 0>



4. An electron in the n = 3, l = 0, m = 0 state of hydrogen decays by a sequence of electric dipole transi-
tions to the ground state. The selection rules for electric dipole transitions are that ∆m = ±1 or 0 and
that ∆l = ±1. In this problem you are only asked to consider the transitions where n changes, so the
nine possible transitions are:

| 3; 0; 0 > ⇒ | 2; 1; 1 >

| 3; 0; 0 > ⇒ | 2; 1; 0 >

| 3; 0; 0 > ⇒ | 2; 1; −1 >

| 3; 0; 0 > ⇒ | 2; 0; 0 >

| 3; 0; 0 > ⇒ | 1; 0; 0 >

| 2; 1; 1 > ⇒ | 1; 0; 0 >

| 2; 1; 0 > ⇒ | 1; 0; 0 >

| 2; 1;−1 > ⇒ | 1; 0; 0 >

| 2; 0; 0 > ⇒ | 1; 0; 0 >

(a) Which of these nine transitions obey the ∆m = ±1 or 0 dipole selection rule?

(b) Which of these nine transitions obey the ∆l = ±1 dipole selection rule?

(c) The dipole allowed transitions must obey both rules. Which six of the nine transitions are dipole al-
lowed?

(d) List all of the allowed dipole transition routes, which pass through the n = 2 states, from the | 3; 0; 0 >
state to the | 1; 0; 0 > state, i.e., list the three dipole allowed routes which have the form:

| 3; 0; 0 > ⇒ | 2; ?; ? > ⇒ | 1; 0; 0 > :

(e) Write down the integral for the dipole matrix element from the | 3; 0; 0 > state to the | 2; 1; 0 >
state. Show that this matrix element only depends on the z component of the r operator, i:e:, show
that

< 2; 1; 0 | r | 3; 0; 0 > = < 2; 1; 0 | z | 3; 0; 0 > k:

(f) Do the integral that you wrote down in part e. You should find < 2; 1; 0 | z | 3; 0; 0 > =

[ √
3
4…

√
1
24

a− 3
2

] [ √
1
4…

2√
27

a− 3
2

] ∫ ∞

0

[
r cos (µ) exp

(
−r

2a

) (
1 −

2r

3a
+

2r2

27a2

)]

27



×
[

r cos (µ) exp
(

−r

3a

)]
r2 dr sin µ dµ d`

so

< 2; 1; 0 | z | 3; 0; 0 > = −
[

28 34

56
√

6

]
a:

(g) Write down the integrals for the dipole matrix elements from the | 3; 0; 0 > state to the | 2; 1;±1 >
states. Show that these matrix elements only depend on the x and y components of the r operator,
i:e:, show that

< 2; 1;±1 | r | 3; 0; 0 > = < 2; 1;±1 | x | 3; 0; 0 > i + < 2; 1;±1 | y | 3; 0; 0 > j:

(h) Now show that these x and y matrix elements are almost identical, i.e., show that

± < 2; 1;±1 | x | 3; 0; 0 > = i < 2; 1;±1 | y | 3; 0; 0 > :

Explain how you can use this to make your life simpler, i.e., explain why you can just calculate one inte-
gral and still obtain all four matrix elements!!!

(i) Do the x integral you wrote down in part g. You should find < 2; 1; ±1 | x | 3; 0; 0 > =

[ √
3
8…

√
1
24

a− 3
2

] [ √
1
4…

2√
27

a− 3
2

] ∫ ∞

0

[
r sin (µ) exp (±i`) exp

(
−r

2a

) (
1 − 2r

3a
+

2r2

27a2

)]

×
[

r cos (µ) exp
(

−r

3a

)]
r2 dr sin µ dµ d`

so

< 2; 1; ±1 | x | 3; 0; 0 > = ±
[

−
27 34

56
√

3

]
a:

(j) According to Fermi’s Golden Rule Number 2, the electric dipole transition rates are proportional to
the squares of the matrix elements. Calculate the squares of these matrix elements and show that the
two of the three decay routes have identical transition rates and that the third route has twice the
transition rate,i.e., show that

1
2

| < 2; 1; 0 | r | 3; 0; 0 > |2 = | < 2; 1; 1 | r | 3; 0; 0 > |2 = | < 2; 1; −1 | r | 3; 0; 0 > |2 :
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So, one half go by one decay route, and one quarter each go by the other two decay routes.

(k) Now the spontaneous emission rates via these three routes are given by

A =
!3 | < r > |2

3 … †0 h̄ c3 ;

so the the total decay rate is given by

R = 3 A = 3
(

e2

3 … †0 h̄ c3

) (
−5 E1

36 h̄

)3 (
215 37

512

)
a2 = 6:32 × 106 seconds−1;

and the lifetime of the | 3; 0; 0 > state is given by ¿ = (1=R) = 1:58 × 10−7 seconds.

4.(a) For an electron transition between the n = 3; l = 0;m = 0 and ground states, given that it can but
does not have to go to the ground state directly, there are nine possible transitions.

All nine possible transitions obey the ∆m = ±1 or 0 selection rule:
The nine possible transitions are

|3; 0; 0> → |2; 1; 1>

|3; 0; 0> → |2; 1; 0>

|3; 0; 0> → |2; 1; −1>

|3; 0; 0> → |2; 0; 0>

|3; 0; 0> → |1; 0; 0>

|2; 1; 1> → |1; 0; 0>

|2; 1; 0> → |1; 0; 0>

|2; 1; −1> → |1; 0; 0>

|2; 0; 0> → |1; 0; 0>
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4.(b)

Six of these these transitions obey the ∆l = ±1 selection rule:
These six allowed transitions are

|3; 0; 0> → |2; 1; 1>

|3; 0; 0> → |2; 1; 0>

|3; 0; 0> → |2; 1; −1>

|2; 1; 1> → |1; 0; 0>

|2; 1; 0> → |1; 0; 0>

|2; 1; −1> → |1; 0; 0>

4.(c)

The six transitions listed in part b obey both dipole transition rules:

4.(d)

The three allowed transitions via an intermediate state are

|3; 0; 0> → |2; 1; 1> → |1; 0; 0>

|3; 0; 0> → |2; 1; 0> → |1; 0; 0>

|3; 0; 0> → |2; 1;−1> → |1; 0; 0>

4.(e) The transition
<2; 1; 0

∣∣~r
∣∣3; 0; 0> = <ˆ210

∣∣~r
∣∣ˆ300 >

= <R21Y10
∣∣~r

∣∣R30Y00 >

=
∫

R21Y10 ~r R30Y00 dV

=
∫

R21R30r
2 dr

∫
Y10 ~r Y00 dΩ

:

The angular part of this equation is

∫ (
3
4…

)1=2

cos µ ~r

(
1
4…

)1=2

dΩ =
√

3
4…

∫
~r cos µ dΩ:
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Remember ~z = ~r cos µ = zk̂ so generalizing back into Dirac notation,

<2; 1; 0
∣∣~r

∣∣3; 0; 0> = <2; 1; 0
∣∣ z

∣∣3; 0; 0> k̂:

4.(f) Evaluating the integral by inserting the appropriate radial and angular functions, we find that the
matrix element we seek < 2; 1; 0

∣∣ z
∣∣3; 0; 0> is equal to the integral

I =
∫ ∞

−∞

(
1√
24

a−3=2 r

a
e−r=2a

(
3
4…

)1=2

cos µ

)∗ (
z

) 2√
27

a−3=2
(

1 − 2r

3a
+

2
27

r2

a2

)
e−r=3a

(
1
4…

)1=2

dV:

Factoring out the constants and simplifying, we find:

I =
1√
24

2√
27

1
a4

(
3
4…

)1=2 (
1
4…

)1=2 ∫ ∞

−∞
r e−r=2a cos µ

(
r cos µ

) (
1 −

2r

3a
+

2
27

r2

a2

)
e−r=3a dV

=
1

12…
√

6a4

∫ ∞

−∞
r2 cos2 µ

(
1 − 2r

3a
+

2
27

r2

a2

)
e−5r=6a dV

And by doing the angular integrals, we can reduce the problem to the radial integrals that we must do

I =
1

12…
√

6a4

∫ ∞

0
r4e−5r=6a

(
1 −

2r
3a

+
2
27

r2

a2

)
dr

∫ …

0
cos2 µ sin µ dµ

∫ 2…

0
d`:

=
1

12…
√

6a4

∫ ∞

0
r4e−5r=6a

(
1 − 2r

3a
+

2
27

r2

a2

)
dr

∫ …

0
cos2 µ sin µ dµ (2…)

=
1

6
√

6a4

∫ ∞

0

(
r4e−5r=6a −

2
3a

r5e−5r=6a +
2

27a2 r6e−5r=6a

)
dr

(
cos3 µ

3

∣∣∣
…

0

)

=
1

6
√

6a4

∫ ∞

0

(
r4e−5r=6a −

2
3a

r5e−5r=6a +
2

27a2 r6e−5r=6a

)
dr

(
−1 − 1

3

)

= − 1
9
√

6a4

(∫ ∞

0
r4e−5r=6a dr − 2

3a

∫ ∞

0
r5e−5r=6a dr +

2
27a2

∫ ∞

0
r6e−5r=6a dr

)
: (1)

We can evaluate all three radial integrals using form 3.381.4 on page 317 of Gradshteyn and Ryzhik, which
is ∫ ∞

0
x”−1e−„x dx =

1
„”

Γ(”); Re „ > 0; Re ” > 0:

For the first integral, ” = 5 and „ = 5=6a, so
∫ ∞

0
r4e−5r=6a dr =

1
(5=6a)5

Γ(5) =
65a5

55 4 · 3 · 2 = 24
65a5

55 :

For the second integral, ” = 6 and „ = 5=6a, so

2
3a

∫ ∞

0
r5e−5r=6a dr =

1
(5=6a)6

Γ(6) =
2
3a

66a6

56 5 · 4 · 3 · 2 = 80
66a5

56 :
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For the third integral, ” = 7 and „ = 5=6a, so

2
27a2

∫ ∞

0
r6e−5r=6a dr =

1
(5=6a)7

Γ(7) =
2

27a2

67a7

57 6 · 5 · 4 · 3 · 2 =
160
3

67a5

57 :

Substituting these into equation (1),

<2; 1; 0
∣∣ z

∣∣3; 0; 0> = −
1

9
√

6a4
a5

(
24

65

55 − 80
66

56 +
160
3

67

57

)

= − a

9
√

6
65

56

(
120 − 80 · 6 +

160 · 62

3 · 5

)

= −
65a

5632
√

6
(120 − 480 + 384)

= − 65a

5632
√

6
(24)

= −
2535a

5632
√

6

(
23 · 3

)

⇒ <2; 1; 0
∣∣ z

∣∣3; 0; 0> = −
2834

56
√

6
a

4.(g) The integrals for < 2; 1; ±1
∣∣~r

∣∣3; 0; 0 > are easier. These integral depend only on the x and y
components of the ~r operator. Here

<2; 1;±1
∣∣~r

∣∣3; 0; 0> =
∫

R∗
21Y

∗
1;±1

(
~r
)
R30Y00 dV

=
∫

R21R30r
2 dr

∫
Y ∗

1;±1
(
~r
)
Y00 dΩ:

The angular integral is

∫
Y ∗

1;±1
(
~r
)
Y00 dΩ =

∫ (
∓

(
3
8…

)1=2
)

sin µe∓i`
(
~r
)(

1
4…

)1=2

dΩ

= ∓
(

3
8…

)1=2 (
1
4…

)1=2 ∫
sin µe∓i`

(
~r
)
dΩ

= ∓
1
4…

√
3
2

∫ (
~r
)
sin µ (cos ` ∓ i sin`) dΩ

= ∓ 1
4…

√
3
2

∫
(~r sin µ cos ` ∓ i(~r sin µ sin`)) dΩ:

Realizing ~r sin µ cos ` = ~x = x̂i and ~r sin µ sin` = ~y = yĵ, we can write this

∫
Y ∗

1;±1
(
~r
)
Y00 dΩ = ∓

1
4…

√
3
2

∫ (
x̂i ∓ i(ŷj)

)
dΩ;
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i.e., we can look at directional or angular dependence as a function of ~x and ~y only. Generalizing back
into Dirac notation, which is representation free so the constants are irrelevant,

<2; 1;±1
∣∣~r

∣∣3; 0; 0> = <2; 1; ±1
∣∣ x̂i ∓ i(yĵ)

∣∣3; 0; 0>

= <2; 1; ±1
∣∣ x

∣∣3; 0; 0> î ∓ <2; 1;±1
∣∣ iy

∣∣3; 0; 0> ĵ
:

The sign “∓” between the two elements reflects only a phase convention, and we will choose without loss
of generality the “+” sign for our phase so

< 2; 1; ±1
∣∣~r

∣∣3; 0; 0> = <2; 1;±1
∣∣ x

∣∣3; 0; 0> î + <2; 1; ±1
∣∣ iy

∣∣3; 0; 0> ĵ:

4.(h) To show
<2; 1;±1

∣∣ x
∣∣3; 0; 0> = i <2; 1;±1

∣∣ y
∣∣3; 0; 0>

consider the commutator [Lz; x] = ih̄y, and the eigenvalue equation Lz|n; l; m > = mh̄|n; l; m >. In
general

<n′; l′; m′∣∣ [Lz; x]
∣∣n; l;m> = <n′; l′;m′∣∣ ih̄y

∣∣n; l;m>

= ih̄ <n′; l′; m′∣∣ y
∣∣n; l; m> :

This must be the same as <n′; l′;m′
∣∣ [Lz; x]

∣∣n; l;m> when the commutator is evaluated explicitly, i.e.,

ih̄ <n′; l′; m′∣∣ y
∣∣n; l; m> = <n′; l′; m′∣∣ [Lz; x]

∣∣n; l;m>

= <n′; l′; m′∣∣ Lzx − xLz

∣∣n; l;m>

where Lz can operate to the left or right. So

ih̄ <n′; l′; m′∣∣ y
∣∣n; l; m> = <n′; l′; m′∣∣ m′h̄x − xmh̄

∣∣n; l; m>

= <n′; l′; m′∣∣ (m′ − m)h̄x
∣∣n; l; m>

= (m′ − m)h̄ <n′; l′;m′∣∣ x
∣∣n; l;m>

⇒ (m′ − m) <n′; l′; m′∣∣ x
∣∣n; l; m> = i <n′; l′; m′∣∣ y

∣∣n; l; m> :

For the specific states of interest

(1 − 0) <2; 1; 1
∣∣ x

∣∣3; 0; 0> = i <2; 1; 1
∣∣ y

∣∣3; 0; 0>

⇒ <2; 1; 1
∣∣ x

∣∣3; 0; 0> = i <2; 1; 1
∣∣ y

∣∣3; 0; 0>;

and
(−1 − 0) <2; 1;−1

∣∣ x
∣∣3; 0; 0> = i <2; 1;−1

∣∣ y
∣∣3; 0; 0>

⇒ − <2; 1;−1
∣∣ x

∣∣3; 0; 0> = i <2; 1;−1
∣∣ y

∣∣3; 0; 0>;

so

± <2; 1;±1
∣∣ x

∣∣3; 0; 0> = i <2; 1;±1
∣∣ y

∣∣3; 0; 0> :
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There are four matrix elements here. If we evaluate the two integrals in x though, we have the two inte-
grals in y from the above relation. Also, because of the symmetry in `, we can do both integrals in x
at the same time, so in effect, we have only one integral to evaluate to get all four matrix elements.

4.(i) To evaluate the integrals in x, remember x = r sin µ cos `, and

± <2; 1; ±1
∣∣ x

∣∣3; 0; 0> = ± <2; 1;±1
∣∣ r sin µ cos `

∣∣3; 0; 0> so

± <2; 1;±1
∣∣ x

∣∣3; 0; 0> =
∫ ∞

−∞
R∗

21Y
∗
1;±1 r sin µ cos `R30Y00 r2Ω

=
∫ ∞

0
R21R30r

3 dr

∫
Y ∗

1;±1 sin µ cos ` Y00 dΩ

=
∫ ∞

0

1√
24

a−3=2 r

a
e−r=2a 2√

27
a−3=2

(
1 −

2r

3a
+

2
27

r2

a2

)
e−r=3ar3 dr

∫
∓

√
3
8…

sin µe∓i`( sin µ cos ` )

√
1
4…

dΩ

= ∓ 1√
24

2√
27

1
a4

√
3
8…

√
1
4…

∫ ∞

0
r4e−5r=6a

(
1 − 2r

3a
+

2
27

r2

a2

)
dr

∫ …

0
sin3 µ dµ

∫ 2…

0
cos `e∓i` d`; (1)

where the third factor of sin µ is from dΩ = sin µ dµ d`. The constants are

∓ 1√
24

2√
27

1
a4

√
3
8…

√
1
4…

= ∓ 1√
23 · 3

2√
33

1
a4

1
4…

√
3√
2

= ∓ 2
√

3√
24 · 34

1
4…a4 = ∓ 1

24…a4
√

3
:

The azimuthal integral is

∫ 2…

0
cos `e∓i` d` =

∫ 2…

0
cos `(cos ` ∓ i sin`) d` =

∫ 2…

0
cos2 `d` ∓ i

∫ 2…

0
cos ` sin`) d`

=
[
1
2
` +

1
4

sin(2`)
]2…

0
∓ i

[
1
2

sin2 `

]2…

0
=

[
1
2
2… − 0 + 0 − 0

]
∓ i [0 − 0] = …:

The polar integral is
∫ …

0
sin3 µ dµ = −

1
3

[
(cos µ)(sin2 µ + 2)

]…

0
= −

1
3

[(−1)(0 + 2) − (1)(0 + 2)] = −
1
3

[−2 − 2] =
4
3
:

The radial integral becomes three integrals
∫ ∞

0
r4e−5r=6a

(
1 − 2r

3a
+

2
27

r2

a2

)
dr =

∫ ∞

0
r4e−5r=6a dr − 2

3a

∫ ∞

0
r5e−5r=6a dr +

2
27a2

∫ ∞

0
r6e−5r=6a dr

and we have already evaluated these integrals Using the results of part (f),

∫ ∞

0
r4e−5r=6a dr = 24

65a5

55 ;

2
3a

∫ ∞

0
r5e−5r=6a dr = 80

66a5

56 ;

2
27a2

∫ ∞

0
r6e−5r=6a dr =

160
3

67a5

57 :
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Compiling these six results, equation (1) becomes

± <2; 1; ±1
∣∣ x

∣∣3; 0; 0> = ∓
1

24…a4
√

3
…

4
3

(
24

65a5

55 − 80
66a5

56 +
160
3

67a5

57

)

= ∓ 1
18a4

√
3

65a5

56

(
24 · 5 − 80 · 6 +

160
3

62

5

)

= ∓
a

2 · 32
√

3
65

56 (120 − 480 + 384)

= ∓
a

2 · 32
√

3
25 · 35

56 (24)

= ∓25 · 35 · 23 · 3
2 · 32 · 56

√
3

a

⇒ <2; 1;±1
∣∣ x

∣∣3; 0; 0> = ±
[
−27 · 34

56
√

3

]
a;

and

< 2; 1;±1
∣∣ y

∣∣3; 0; 0> = ±i

[
−

27 · 34

56
√

3

]
a:

4.(j) According to Fermi’s Golden Rule Number 2, the electric dipole transition rates are proportional
to the squares of the matrix elements. We have all three matrix elements so we can calculate the relative
rates of decays for the three paths. From part f, we have

∣∣ <2; 1; 0
∣∣~r

∣∣3; 0; 0>
∣∣2 =

[
−

28 · 34

56
√

6
a

]2

=
216 · 38

512 · 6
a2 =

215 · 37

512 a2;

and from parts g and i, we have

< 2; 1; ±1
∣∣~r

∣∣3; 0; 0>=< 2; 1;±1
∣∣ x

∣∣3; 0; 0> ±i < 2; 1; ±1
∣∣y

∣∣3; 0; 0>;

so the total transition rate is the sum of the x and y induced rates, and is twice as large as the individual
x and y matrix elements squared:

∣∣ <2; 1; ±1
∣∣~r

∣∣3; 0; 0>
∣∣2 = 2

[
∓

27 · 34

56
√

3
a

]2

=
215 · 37

512 a2:

Consequently, we conclude that the three decay rates are equal:

∣∣ <2; 1; 0
∣∣~r

∣∣3; 0; 0>
∣∣2 =

∣∣ <2; 1; 1
∣∣~r

∣∣3; 0; 0>
∣∣2 =

∣∣ <2; 1; −1
∣∣~r

∣∣3; 0; 0>
∣∣2:
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4.(k) The spontaneous emission rates are given by

A =
!3

∣∣ q <ˆb

∣∣~r
∣∣ˆa >

∣∣2

3…†0h̄c3 where ! =
Eb − Ea

h̄
:

These are given by

A3;0;0→2;1;0 =

[
13:6=22 − 13:6=32

]3 1
h̄3 e2

3…†0h̄c3

∣∣ <3; 0; 0
∣∣~r

∣∣2; 1; 0>
∣∣2

=
(

e2

4…†0

)
4
3

1
h̄4c3

[
13:6
4

− 13:6
9

]3 215 · 37

512 a2

= (1:440 eV · nm)
4
3

(2…)4

h4c3 [3:40 − 1:51]3 (eV)3 0:294a2

=
(1:440 eV · nm)

(hc)3
64…4

3h
[1:89]3 eV3 (0:294)(0:0529 nm)2

=
(1:440 eV · nm)

(1:240 × 103 eV · nm)3
2078:06

h
[6:75] (0:294)(0:00280) eV3nm2

=
(1:440 eV · nm)

1:907 × 109 eV3 · nm3

11:547
h

eV3nm2

=
8:72−9 eV

4:136 × 10−15eV · s
= 2:11 × 106 s−1

⇒ ¿3;0;0→2;1;0 =
1
A

= 4:75 × 10−7 s:

The spontaneous emission rates for < 2; 1; 1
∣∣~r

∣∣3; 0; 0 > and < 2; 1; −1
∣∣~r

∣∣3; 0; 0 > are calculated similarly,
and since the matrix elements are identical in value, we find:

A3;0;0→2;1;1 = A3;0;0→2;1;−1 = A3;0;0→2;1;0 = 2:11 × 106 s−1:

So the rate via each path is the same:

¿3;0;0→2;1;1 =
1
A

= 4:75 × 10−7 s

¿3;0;0→2;1;−1 =
1
A

= 4:75 × 10−7 s

¿3;0;0→2;1;0 =
1
A

= 4:75 × 10−7 s;
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and the total decay rate is set by

AT = 3(2:11 × 106 s−1) = 6:33 × 106 s−1;

which gives us the lifetime

¿T =
1

AT
= 1:58 × 10−7 s:
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Fermi’s Theory 
of Beta Decay
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The Fermi Selection Rule for 

Beta Decay

(`fer·me si`lek·shen `rül)

There is no change in the total 

angular momentum or the parity 

of the nucleus
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Requirements - I

2.) Single beta decay must be forbidden (m (A,Z) < m (A,Z+1))
or at least strongly suppressed (large change in angular momentum)

1.) m(A,Z) > m(A,Z+2)
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Physical Motivation
Predictions of the island of SHE • nuclei beyond Fm exist only 

  due to shell effects

• predictions of highly stabilized 
  SHE (Ttheo ~ min -y)

• failure to synthesize SHE 
  by reactions of the type 
  Pb + Pb (U + U) 

1) Production of SHE via
    “hot” and “cold” fusion
2) Systematic study of nuclear
    structure of transfermium 
    isotopes

SHE location – opened
Z = 114, 120, 126

N = 172, 184

fundamentals of spin-orbit
force

↓



Our Understanding of Beta Decay 

Pauli: missing momentum => undetected particle

Fermi: Point interaction theory

Sudarshan-Marshak:  VA theory
Feynman-Gellmann

Neutrino mass: no theory yet







Dear Radioactive Ladies and Gentlemen: Zurich, December 4, 1930
         I beg you to receive graciously the bearer of this letter who will report to you in detail how I have hit on a desperate way to escape
from the problems of the "wrong" statistics of the N and Li6 nuclei and of the continuous beta spectrum in order to save the "even-odd” rule of
statistics and the law of conservation of energy. Namely the possibility that electrically neutral particles, which I would like to call neutrons might
exist inside nuclei; these would have spin 1/2, would obey the exclusion principle, and would in addition differ from photons through the fact that
they would not travel at the speed of light. The mass of the neutron ought to be about the same order of magnitude as the electron mass, and in any
case could not be greater than 0.01 proton masses. The continuous beta spectrum would then become understandable by assuming that in beta
decay a neutron is always emitted along with the electron, in such a way that the sum of the energies of the neutron and electron is a constant.
Now, the question is, what forces act on the neutron? The most likely model for the neutron seems to me, on wave mechanical grounds, to be
the assumption that the motionless neutron is a magnetic dipole with a certain magnetic moment µ (the bearer of this letter can supply details).
The experiments demand that the ionizing power of such a neutron cannot exceed that of a gamma ray, and therefore µ probably cannot be greater
than e (10-13cm). [e is the charge of the electron].
       At the moment I do not dare to publish anything about this idea, so I first turn trustingly to you, dear radioactive friends, with the question:
how could such a neutron be experimentally identified if it possessed about the same penetrating power as a gamma ray or perhaps 10 times
greater penetrating power?
       I admit that my way out may look rather improbable at first since if the neutron existed it would have been seen long ago. But nothing
ventured, nothing gained.  The gravity of the situation with the continuous beta spectrum was illuminated by a remark by my distinguished
predecessor in office, Mr. DeBye, who recently said to me in Brussels, "Oh, that’s a problem like the new taxes; one had best not think about
it at all." So one ought to discuss seriously any way that may lead to salvation. Well, dear radioactive friends, weigh it and pass sentence!
Unfortunately, I cannot appear personally in Tubingen, for I cannot get away from Zurich on account of a ball, which is held.here on the night
of December 6-7
      With best regards to you and to Mr. Baek,

       Your most obedient servant,
           W. Pauli

Pauli’s “Neutrino”
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E. Fermi’s publications on the Weak Interaction

E. Fermi, “Tentative Theory of Beta Rays” 
Letter Submitted to Nature (1933)REJECTED

Published in Nuovo Cimento and Zeitschrift fur Physik



Fermi’s paper on beta decay:
• Established a predictive realization of Pauli’s proposal
• Established the connection between quantum
  field theory and particles.
• Predicted the statistical shape of the beta spectrum and the
  consequences of finite neutrino mass.
• Anticipated the most likely experimental distortions to
  beta spectrum.
• Discussed the dominate electromagnetic corrections to the
   beta decay spectrum.
• Established a theory that remains the (essentially) correct
  description of beta decay.

Fermi’s theory remains the “correct” description of beta decay except:
• As pointed out by Gamow and Teller in 1936 another component
  of the Hamiltonian is required to account for decays like 6He
• Neutrons and protons are not elementary particle and there are
  forbidden contributions (induced terms) due to their structure



The fundamental
process

•In analogy with the theory of radiation Fermi
applied the creation and distruction operators 
of Dirac-Jordan-Klein-Wigner and Dirac’s 
relativisitic theory for spin 1/2 particles

•Of the possibilities in Dirac invariant interactions
(S, V, A, T, P) Fermi chose a vector interaction for the
nucleon current and the lepton current.

     H(x) = g [p+(x) γογµn(x)]  [e+(x) γoγµν(x)]



Three Nobel Prizes for Neutrinos

Frederick Reines (1995)
Neutrinos from Reactors

Raymond Davis (2002)
Neutrinos from the Sun

Masatoshi Koshiba (2002)
Neutrinos from the Stars



Dear Enrico, October 4, 1952
    We thought that you might be interested in the latest version of our experiment to detect the free neutrino, hence this letter.
as you recall, we planned to use a nuclear explosion for the source because of the background difficulties.  Only last week it
occurred to us that background problems could be reduced to the point where a Hanford pile would suffice by counting only 
delayed coincidences between the positron pulse and neutron capture pulse.  You will remember that the reaction we plan to 
use is p + ν -> n +β+.  Boron loading a liquid scintillator makes it possible to adjust the mean time T between these two events
and we are considering T ~ 10 µsec.  Our detector is a 10 cubic foot fluor filled cylinder surrounded by about 90 5819’s
operating as two large tubes of 45 5819’s each.  These two banks of ganged tubes isotropically distributed about the curved 
cylindrical wall are in coincidence to cut tube noise.  The inner wall of the chamber will be coated with a diffuse reflector and
in all we expect the system to be energy sensitive, and not particularly sensitive to the position of the event in the fluor.  
This energy sensitivity will be used to discriminate further against background.  Cosmic ray anti-coincidence will be used in
addition to mercury of low background lead for shielding against natural radioactivity.  We plan to immerse the entire detector
in a large borax water solution for further necessary reduction of pile background below that provided by the Hanford shield.
     Fortunately, the fast reactor here at Los Alamos provides the same leakage flux as Hanford so that we can check our gear
before going to Hanford.  Further, if we allow enough fast neutrons from the fast reactor to leak into our detector we can simulate
double pulses because of the proton recoil pulse followed by the neutron capture which occurs in this case.  We expect a count-
ting rate at Hanford in our detector about six feet from the pile face of ~1/min with a background somewhat lower than this.
     As you can imagine, we are quite excited about the whole business, have canceled preparations for use of a bomb, and we are
working like mad to carry out the ideas sketched above.  Because of the enormous simplification in the experiment.  We have 
already made rapid progress with the electronic gear and associated equipment and expect that tin the next few months we shall 
be at Hanford reaching for the slippery particle.
     We would of course appreciate any comments you might care to make.
Sincerely, 
Fred Reines, Clyde Cowan

Dear Fred, October 8, 1952
    Thank you for your letter of October 4th by Clyde Cowan and yourself.  I was very much interested in you new plan for the
detection of the neutrino.  Certainly your new method should be much simpler to carry out and have the great advantage that the
measurement can be repeated any number of times.  I shall be very interested seeing how your 10 cubic foot scintillaton counter
is going to work, but I do not know of any reason why it should not.
Good Luck.
Sincerely yours,
Enrico Fermi



“I shall be very interested seeing how your 40,624 cubic foot scintillaton 
counter is going to work, but I do not know of any reason why it should not.”



The Neutrino: From Poltergeist to Particle
Nobel Lecture, December 8, 1995
Frederick Reines

The Second World War had a great influence on the lives and careers of very many of us for whom those 
were formative years. I was involved during, and then subsequent to, the war in the testing of nuclear 
bombs, and several of us wondered whether this man-made star could be used to advance our
knowledge of physics. For one thing this unusual object certainly had lots of fissions in it, and hence, was a 
very intense neutrino source. I mulled this over somewhat but took no action.

Then in 1951, following the tests at Eniwetok Atoll in the Pacific, I decided I really would like to do some 
fundamental physics. Accordingly, I approached my boss, Los Alamos Theoretical Division Leader, J. Carson 
Mark, and asked him for a leave in residence so that I could ponder. He agreed, and I moved to a stark 
empty office, staring at a blank pad for several months searching for a meaningful question worthy of a 
life’s work. It was a very difficult time. The months passed and all I could dredge up out of the 
subconscious was the possible utility of a bomb for the direct detection of neutrinos. Afterall, such a 
device produced an extraordinarily intense pulse of neutrinos and thus the signals produced by neutrinos 
might be distinguishable from background. Some handwaving and rough calculations led me to conclude that
the bomb was the best source. All that was needed was a detector measuring a cubic meter or so. I 
thought, well, I must check this with a real expert.

It happened during the summer of 1951 that Enrico Fermi was at Los Alamos, and so I went down the hall, 
knocked timidly on the door and said, “I’d like to talk to you a few minutes about the possibility of neutrino 
detection.”  He was very pleasant, and said, “Well, tell me what’s on your mind?”  I said, “First off as to 
the source, I think that the bomb is best.” After a moment’s thought he said, “Yes, the bomb is the best 
source.” So far, so good! Then I said, “But one needs a detector which is so big. I don’t know how to make 
such a detector.” He thought about it some and said he didn’t either. Coming from the Master that was 
very crushing. I put it on the back burner until a chance conversation with Clyde Cowan. We were on our 
way to Princeton to talk with Lyman Spitzer about controlled fusion when the airplane was grounded in 
Kansas City because of engine trouble. At loose ends we wandered around the place, and started to 
discuss what to do that’s interesting in physics. “Let’s do a real challenging problem,” I said. He said,
“Let’s work on positronium.” I said, “No, positronium is a very good thing but Martin Deutsch has that 
sewed-up. So let’s not work on positronium.” Then I said, “Clyde let’s work on the neutrino.” His immediate 



response was, “GREAT IDEA.” He knew as little about the neutrino as I did but he was a good 
experimentalist with a sense of derring do. So we shook hands and got off to working on neutrinos.

Need for Direct Detection

Before continuing with this narrative it is perhaps appropriate to recall the evidence for the existence of 
the neutrino at the time Clyde and I started on our quest. The neutrino of Wolfgang Pauli[l] was postulated 
in order to account for an apparent loss of energy-momentum in the process of nuclear beta decay. In his 
famous 1930 letter to the Tübingen congress, he stated: “I admit that my expedient may seem rather 
improbable from the first, because if neutrons* existed they would have been discovered long since.
*When the neutron was discovered by Chadwick, Fermi renamed Pauli’s particle the “neutrino”.
Nevertheless, nothing ventured nothing gained... We should therefore be seriously discussing every path to 
salvation.”

All the evidence up to 1951 was obtained “at the scene of the crime” so to speak since the neutrino once 
produced was not observed to interact further. No less an authority than Niels Bohr pointed out in 1930[2] 
that no evidence “either empirical or theoretical” existed that supported the conservation of energy in 
this case. He was, in fact, willing to entertain the possibility that energy conservation must be abandoned 
in the nuclear realm. However attractive the neutrino was as an explanation for beta decay, the proof of 
its existence had to be derived from an observation at a location other than that at which the decay 
process occurred - the neutrino had to be observed in its free state to interact with matter at a remote 
point.
It must be recognized, however, that, independently of the observation of a free neutrino interaction with 
matter, the theory was so attractive in its explanation of beta decay that belief in the neutrino as a “real” 
entity was general. Despite this widespread belief, the free neutrino’s apparent undetectability led it to be 
described as “elusive, a poltergeist.”

So why did we want to detect the free neutrino? Because everybody said, you couldn’t do it. Not very 
sensible, but we were attracted by the challenge. After all, we had a bomb which constituted an excellent 
intense neutrino source. So, maybe we had an edge on others. Well, once again being brash, but 
nevertheless having a certain respect for certain authorities, I commented in this vein to Fermi, who 
agreed. A formal way to make some of these comments is to say that, if you demonstrate the existence 
of the neutrino in the free state, i.e. by an observation at a remote location, you extend the range of 



applicability of these fundamental conservation laws to the nuclear realm. On the other hand, if you didn’t 
see this particle in the predicted range then you have a very real problem.

As Bohr is reputed to have said, “A deep question is one where either a yes or no answer is interesting.” 
So I guess this question of the existence of the “free” neutrino might be construed to be deep. Alright, 
what about the problem of detection? We fumbled around a great deal before we got to it. Finally, we 
chose to look for the reaction Te + p + n + e’. If the free neutrino exists, this inverse beta decay reaction 
has to be there, as Hans Bethe and Rudolf Peierls recognized, and as I’m sure did Fermi, but they had no 
occasion to write it down in the early days. Further, it was not known at the time whether V, and V, were 
different. We chose to consider this reaction because if you believe in what we today call “crossing 
symmetry” and use the measured value of the neutron half life then you know what the cross section has
to be - a nice clean result. (In fact, as we learned some years later from Lee and Yang, the cross section is 
a factor of two greater because of parity nonconservation and the handedness of the neutrino.) Well, we 
set about to assess the problem of neutrino detection. How big a detector is required? How many counts 
do we expect? What features of the interaction do we use for signals? Bethe and Peierls in 1934 [3], 
almost immediately after the Fermi paper on beta decay[4], estimated that if you are in the few MeV 
range the cross section with which you have to deal would be ~ l0-44 cm2. To appreciate how minuscule 
this interaction is we note that the mean free path is ~ 1000 light years of liquid hydrogen. Pauli put his 
concern succinctly during a visit to Caltech when he remarked: “I have done a terrible thing. I have 
postulated a particle that cannot be detected.” No wonder that Bethe and Peierls concluded in 1934 
“there is no practically possible way of observing the neutrino.”  I confronted Bethe with this 
pronouncement some 20 years later and with his characteristic good humor he said, “Well, you shouldn’t 
believe everything you read in the papers.”

Reflecting on the trail that took us from bomb to reactor, it is evident that it was our persistence which 
led us from a virtually impossible experiment to one that showed considerable promise. The stage had been 
set for the detection of neutrinos by the discovery of fission and organic scintillators - the
most important barrier was the generally held belief that the neutrino was undetectable.

Absorption Test

The only known particles, other than ie produced by the fission process, were discriminated against by 
means of a gamma-ray and neutron shield. When a bulk shield measured to attenuate gamma rays and 



neutrons by at least an order of magnitude was added, the signal was observed to remain constant; that is 
the reactor-associated signal was 1.74 ± O.12/hour with, and 1.69 ± 0.17/hour without the shield.

Telegram to Pauli

The tests were completed and we were convinced. It was a glorious feeling to have participated so 
intimately in learning a new thing, and in June of 1956 we thought it was time to tell the man who had 
started it all when, as a young fellow, he wrote his famous letter in which he postulated the neutrino,
saying something to the effect that he couldn’t come to a meeting and tell them about it in person 
because he had to go out to a dance! The message was forwarded to him at CERN, where he interrupted
the meeting he was attending to read the telegram to the conferees and then made some impromptu 
remarks regarding the discovery. That message reads, “We are happy to inform you that we have 
definitely detected neutrinos from fission fragments by observing inverse beta decay of protons. 
Observed cross section agrees well with expected six times ten to minus forty four square centimeters.” 
We learned later that Pauli and some friends consumed a case of champagne in celebration! Many years 
later (~ 1986) C.P. Enz, a student of Pauli’s, sent us a copy of a night letter Pauli wrote us in 1956, but 
which never arrived. It says, “Thanks for the message. Everything comes to him who knows how to wait. 
Pauli"







Direct Detection 
of the Neutrino
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Neutrino Detection
Neutrinos are elusive. A low energy neutrino has some chance of 
passing through 1000 light-years of lead without interacting!

Cosmic Gall
-John Updike-

Neutrinos, they are very small.
They have no charge and have no mass
And do not interact at all.
The earth is just a silly ball
To them, through which they simply pass,
Like dustmaids through a drafty hall
Or photons through a sheet of glass.
They snub the most exquisite gas,
Ignore the most substantial wall,
Cold-shoulder steel and sounding brass,
Insult the stallion in his stall,
And scorning barriers of class,
Infiltrate you and me! Like tall
And painless guillotines, they fall
Down through our heads into the grass.
At night, they enter at Nepal
And pierce the lover and his lass
From underneath the bed-you call
It wonderful; I call it crass.

The New Yorker Magazine, Inc. , 1960

YOU are now being invaded by about 1014 neutrinos each second!



A HALF-CENTURY WITH SOLAR NEUTRINOS

Nobel Lecture, December 8, 2002

by

RAYMOND DAVIS, JR.

Department of Physics and Astronomy, University of Pennsylvania, Philadel-
phia, PA 19104 and Chemistry Department, Brookhaven National Laborato-
ry, Upton, NY 11973, USA.

Neutrinos are neutral, nearly massless particles that move at nearly the speed
of light and easily pass through matter. Wolfgang Pauli (1945 Nobel Laureate
in Physics) postulated the existence of the neutrino in 1930 as a way of carry-
ing away missing energy, momentum, and spin in beta decay. In 1933, Enrico
Fermi (1938 Nobel Laureate in Physics) named the neutrino (“little neutral
one” in Italian) and incorporated it into his theory of beta decay.

The Sun derives its energy from fusion reactions in which hydrogen is
transformed into helium. Every time four protons are turned into a helium
nucleus, two neutrinos are produced. These neutrinos take only two seconds
to reach the surface of the Sun and another eight minutes or so to reach the
Earth. Thus, neutrinos tell us what happened in the center of the Sun eight
minutes ago. The Sun produces a lot of neutrinos, 1.8�1039 per second: even
at the Earth, 150 million kilometers from the Sun, about 100 billion pass
through an average fingernail (1 cm2) every second. They pass through the
Earth as if it weren’t there and the atoms in the human body capture a neu-
trino about every seventy years, or once in a lifetime. As we will see, neutrinos
captured me early in my career.

I received my Ph.D. from Yale in 1942 in physical chemistry (Davis, 1942)
and went directly into the Army as a reserve officer. After the war, I decided to
search for a position in research with the view of applying chemistry to stud-
ies in nuclear physics. After two years with the Monsanto Chemical Company
in applied radiochemistry of interest to the Atomic Energy Commission, I was
very fortunate in being able to join the newly created Brookhaven National
Laboratory. Brookhaven was created to find peaceful uses for the atom in all
fields of basic science: chemistry, physics, biology, medicine, and engineering.

When I joined the Chemistry Department at Brookhaven, I asked the
chairman, Richard Dodson, what he wanted me to do. To my surprise and de-
light, he told me to go to the library and find something interesting to work
on. I found a stimulating review on neutrinos (Crane, 1948). This quote from
Crane shows that neutrino physics was a field that was wide open to explo-
ration: “Not everyone would be willing to say that he believes in the existence
of the neutrino, but it is safe to say that there is hardly one of us who is not
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served by the neutrino hypothesis as an aid in thinking about the beta-decay
hypothesis”. Neutrinos also turned out to be suitable for applying my back-
ground in physical chemistry. Crane had quite an extensive discussion on the
use of recoil experiments to study neutrinos. I immediately became interest-
ed in such experiments (Fig. 1). I spent the first year working on the recoil of
107Ag from the electron-capture decay of 107Cd, but these experiments were in-
conclusive.

My first successful experiment was a study of the recoil energy of a 7Li nu-
cleus resulting from the electron-capture decay of 7Be. In 7Be decay, a single
monoenergetic neutrino is emitted with an energy of 0.862 MeV, and the re-
sulting 7Li nucleus should recoil with a characteristic energy of 57 eV. A mea-
surement of this process provides evidence for the existence of the neutrino.
In my experiment, the energy spectrum of a recoiling 7Li ion from a surface
deposit of 7Be was measured and found to agree with that expected from the
emission of a single neutrino (Davis, 1952). This was a very nice result, but I
was scooped by a group from the University of Illinois (Smith and Allen,
1951).

In 1951, I began working on a radiochemical experiment for detecting
neutrinos using a method that was suggested by Pontecorvo (1946): captur-
ing neutrinos with the reaction: 37Cl + �e ➝ 37Ar + e–. Bruno Pontecorvo’s
short paper was quite detailed, and the method he described, removing 
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Figure 1. The first page in my first laboratory notebook at Brookhaven National Laboratory. I was
hooked on neutrinos from the beginning.



on the enclosed sheet. As you see, there is no visible peak at Ar37 (3.0
keV). The background for this counter run just before the sample is
shown also on the enclosed sheet. Comparing these we can obtain the
following results:

Argon from 105 gal tank = 16 ± 4 counts (tot. 39.7 d)
Background = 4 � (39.7/11.5) = 14 ± 4 counts (for 39.7 d)

Increase = 2 ± 5 counts
Using: 2.1 � 1030 Cl37 atoms in tank

Counter efficiency � 0.50
Then, ��	 = (0.2 ± 0.4) � 10–35 sec–1

≤ 0.6 � 10–35 sec–1

Using �(B8) = 1.35 � 10–42 (Bahcall)
�
8 ≤ 0.5 � 107 cm–2 sec–1

This limit is quite low, but according to the latest opus from Bahcall
and Shaviv the B8 flux is 1.4 (1 ± 0.6) � 107 cm–2 sec–1. I hope to im-
prove these results by improving the counter background, statistics, and
longer irradiations.

Please regard these results as very preliminary. There are several
points that must be checked before we are certain this is a bonafide ob-
servation. I will collect another sample in September–we are ready now,
turn on the sun.

I have hopes of showing you the apparatus sometime in the future.
The scenery is not be be compared with the English countryside, but it
has its attractions.
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Figure 9. A drawing of the chlorine experiment. From Sharp Bits, Spring 1969.



sured. These tests and more, as well as the standard operating procedure for
the experiment, are described in Cleveland et al. (1998).

The solar neutrino problem lasted from 1967–2001. Over this period nei-
ther the measured flux nor the predicted flux changed significantly. I never
found anything wrong with my experiment. John Bahcall never found any-
thing wrong with the standard solar model, in fact, the advent of helioseis-
mology confirmed the temperature profile in his model. The discrepancy be-
tween theory and experiment was a robust factor of three. Cleveland et al.
(1998) summarized all of the data from the Homestake experiment. One
hundred and eight runs were made after rise-time counting was implemented
(Fig. 15). Over a period of 25 years, we counted a total of 2200 37Ar atoms and
obtained a solar neutrino flux of 2.56 ± 0.16 (statistical error) ± 0.16 (system-
atic error) SNU. The current prediction from the standard solar model
(Bahcall et al., 2001) is 7.6+1.3

–1.1  SNU.
The results from the Homestake experiment provoked a great deal of ac-

tivity among theorists. Here are some of the more interesting and, in retro-
spect amusing, alternatives to the standard solar model. Fowler (1968, 1972)
and Sheldon (1969) suggested that there was a secular instability in energy
production in the center of the Sun. Since light takes about 10 million years
to reach the surface of the Sun, while neutrinos sample the core eigth min-
utes ago, the energy production could be low at the present time. Neutrino
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Figure 13. In the first few years of the experiment, the counters were placed in sections of pre-
bomb battleship gun barrels for shielding. I am shown loading a counter into the barrel. From
Sharp Bits, Spring 1969.



84

BIRTH OF NEUTRINO ASTROPHYSICS

Nobel Lecture, December 8, 2002

by

MASATOSHI KOSHIBA
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7-3-1-Hongo, Bunkjo-Ku, Tokyo 113-0033, Japan.

In giving this talk I am very much helped by the preceding talk because I can
skip some of the topics. If you want further information, please refer to my re-
view article, “Observational Neutrino Astrophysics,” [1].

I am to talk about the birth of the neutrino astrophysics, but before the
birth, there was a very important event, which was just described by Prof.
Davis. [2]. It was the radiochemical work using the reaction �e + 37Cl going to
e + 37Ar. He found that the observed neutrino flux was only 1/3 of the theo-
retically expected. This could be considered as the conception of the neu-
trino astrophysics and was in fact the impetus for us to begin seriously work-
ing on the solar neutrinos. 

I will talk about two experiments. The first is the original KamiokaNDE,
which might be called an Imaging Water Cerenkov detector with a surface
coverage of 20% by photomultipliers and the total mass of the water inside
this detector is 3,000 tons. It costed about 3 million U.S. dollars. This, mind
you, was meant to be the feasibility experiment on the astrophysical detection
of solar neutrinos. The second experiment is called Super-KamiokaNDE, the
same type of detector but with a better light sensitivity, that is, 40% of the en-
tire surface was covered by the photocathode and the total mass of the water
was 50,000 tons. It costed about 100 million U.S. dollars. This was considered
to be the full-scale solar neutrino observatory.

Both the experiments are situated about 1,000 meters underground in
Kamioka Mine. The capital letters NDE at the end of the two experiments
originally implied “Nucleon Decay Experiment.” However, because of our de-
tection of various neutrinos by these detectors, people started calling it,
“Neutrino Detection Experiment”. 

Fig.1 shows the interior of KamiokaNDE. You can see arrays of photomulti-
pliers on the sidewalls as well as on the top and at the bottom. When we were
preparing for this KamiokaNDE experiment, we heard that a much bigger, ex-
periment but of similar type, was being planned in the United States. [3]. We
had to think very seriously about the competition with this bigger detector.
Both experiments aimed at the detection of a certain type of proton decay,
i.e., e+ + �0 mode. If we were aiming only for the detection of such particular
types of proton decays, certainly the much bigger U.S. experiments would
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Figure 1. The interior of KamiokaNDE.

Figure 2. The newly developed large photomultiplier.
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find it first. Then, what could we do with a smaller detector? We thought very
seriously about this competition and we came to the conclusion that the  on-
ly possible way to compete with this bigger detector would be to make our de-
tector much more sensitive than the U.S. competitors so that we could not on-
ly detect the easiest proton decay mode, but also measure other types of
proton decays. Then eventually we could say that the proton decays into this
mode with this branching ratio and into that mode with that branching ratio
and so forth. Then our experiment would be able to point the way to the pos-
sible future, what is called the Grand Unified Theory, which is a new type of
theory combining strong forces, weak forces, and electromagnetic forces. 

Thanks to the cooperation of Hamamatsu Photonics Co., we jointly devel-
oped very large photomultiplier tubes [4]. I was so happy, as you can see in
Fig. 2 that this tube was successfully developed.

Fig. 3 shows the fish-eye view of the Super-KamiokaNDE interior. You can
see many more phototubes, a total of about 11,000 big phototubes.

Since I suppose that not many people are familiar with this type of detec-
tor, I want to show you the performance of Super-KamiokaNDE. The first ex-
ample is a very slow motion picture of a cosmic ray muon passing through the
detector.

Figure 3. The interior of S-K through fish-eye lens.



Cutaway view of the KamLAND detector



Exterior view of KamLAND sphere



Interior of KamLAND sphere October 2000



KamLAND Detector Ready for Fill May 2001
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